

Via P. Giuria, 7 10125 Torino Italy

Seminar announcement

Novembre 16th, 2018 at 12.00 Dipartimento di Chimica, Aula Diagonale

Combining Theory and Experiments in Exploration and Design of Nanostructured Materials

Prof. Dr. Marek Sierka

Computational Materials Science Group
Otto Schott Institute of Materials Research
Faculty of Physics and Astronomy
Friedrich-Schiller-Universität Jena, Germany

Contatto:

Prof. Bartolomeo Civalleri

Università degli Studi di Torino Dipartimento di Chimica

Via P. Giuria, 7 10125 Torino Italy

Combining Theory and Experiments in Exploration and Design of Nanostructured Materials

Marek Sierka

Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, D-07743 Jena, Germany

Nanostructured and low-dimensional materials such as clusters, nanoparticles, thin films and nanocrystalline solids are technologically very important systems that often exhibit unique properties. This opens new possibilities for the design and fabrication of highly functional materials with tailored properties. However, due to the limitations of both theory and experiments these tasks can frequently only be achieved combining computer simulations and experimental investigations. In addition, many chemical and physical properties of nanostructured materials arise from processes and features at multiple scales, both spatial and temporal. This makes necessary simulations of material properties using information or models from different levels of theory: quantum mechanics, molecular mechanics and dynamics as well as statistical thermodynamics. The examples presented in my talk include joined theoretical and experimental studies of structure evolution of nanoparticulate iron oxide, development of polymer-based, nanoparticulate carrier materials for targeted therapy of diseases as well as the development of nanostructured glass ceramics for zero thermal expansion materials. In all cases the full characterization and understanding of these systems could only be accomplished combining experiments and simulations employing a multitude of computational tools.